Volume Minimization and Estimates for Certain Isotropic Submanifolds in Complex Projective Spaces

نویسنده

  • EDWARD GOLDSTEIN
چکیده

In this note we show the following result using the integral-geometric formula of R. Howard: Consider the totally geodesic RP 2m in CP n. When it minimizes volume among the isotropic submanifolds in the same Z/2 homology class in CP n (but not among all submanifolds in this Z/2 homology class). Also the totally geodesic RP 2m−1 minimizes volume in its Hamiltonian deformation class in CP n. As a corollary we’ll give estimates for volumes of Lagrangian submanifolds in complete intersections in CP n.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isotropic Lagrangian Submanifolds in Complex Space Forms

In this paper we study isotropic Lagrangian submanifolds , in complex space forms . It is shown that they are either totally geodesic or minimal in the complex projective space , if . When , they are either totally geodesic or minimal in . We also give a classification of semi-parallel Lagrangian H-umbilical submanifolds.

متن کامل

Hamiltonian-minimal Lagrangian submanifolds in complex space forms

Using Legendrian immersions and, in particular, Legendre curves in odd dimensional spheres and anti De Sitter spaces, we provide a method of construction of new examples of Hamiltonian-minimal Lagrangian submanifolds in complex projective and hyperbolic spaces, including explicit one parameter families of embeddings of quotients of certain product manifolds. In addition, new examples of minimal...

متن کامل

Spin geometry of Kähler manifolds and the Hodge Laplacian on minimal Lagrangian submanifolds

From the existence of parallel spinor fields on CalabiYau, hyper-Kähler or complex flat manifolds, we deduce the existence of harmonic differential forms of different degrees on their minimal Lagrangian submanifolds. In particular, when the submanifolds are compact, we obtain sharp estimates on their Betti numbers. When the ambient manifold is Kähler-Einstein with positive scalar curvature, and...

متن کامل

Higher dimensional knot spaces for manifolds with vector cross product

Vector cross product structures on manifolds include symplectic, volume, G2and Spin (7)-structures. We show that their knot spaces have natural symplectic structures, and we relate instantons and branes in these manifolds with holomorphic disks and Lagrangian submanifolds in their knot spaces. For the complex case, the holomorphic volume form on a Calabi-Yau manifold de…nes a complex vector cro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004